Greg Egan vient de contribuer à la résolution d'une question de mathématique en suspens depuis 25 ans.
Les détails ici.
Je ne comprends que les bases (combinatoire et factorielles) mais pas les éléments les plus avancés (ma licence de maths a plus de quarante ans), surtout en anglais.
Un article du bon professeur Lehoucq dans un prochain Bifrost?
JDB
Greg Egan super-permutant
Greg Egan super-permutant
"Inusable (ou presque)", qu'il disait.
- Albumine Tagada
- Patrouilleur temporel
- Messages : 49
- Enregistré le : 29 juin 2012 à 19:22
Re: Greg Egan super-permutant
Mais quel homme, ce Greg !
Je n'ai rien pigé, mais je reste admiratif malgré tout. Par ailleurs, le site a l'air très sympa.
Merci pour l'info !
(Ah, et quelqu'un connaît la série dont il est question au départ ?)
Je n'ai rien pigé, mais je reste admiratif malgré tout. Par ailleurs, le site a l'air très sympa.
Merci pour l'info !
(Ah, et quelqu'un connaît la série dont il est question au départ ?)
- Pyjam
- Cookie Monster
- Messages : 510
- Enregistré le : 12 janvier 2016 à 13:57
- Localisation : Babylon 5
Re: Greg Egan super-permutant
Ça rappelle un problème concernant le Rubik's Cube : existe-t-il un algorithme (une séquence de mouvements) capable de résoudre le cube quel que soit son état ? À condition de s'arrêter quand le cube est résolu, bien sûr. On appelle cela un chemin Hamiltonien.
La réponse est oui, et le nombre de mouvements est exactement égal au nombre d'états possibles du cube (43 trillions) — ce qui semble effectivement nécessaire — mais pas davantage car on ne passe jamais deux fois par le même état.
Il existe de nombreuses solutions, et on peut poser des restrictions pour améliorer l'ergonomie de l'algorithme en maximisant le nombre de rotations de certaines faces par rapport à d'autres. Ainsi on peut avoir des solutions qui ne tournent que 5 faces sur les 6 et utilisent pour moitié des rotations des faces droite et haute.
La réponse est oui, et le nombre de mouvements est exactement égal au nombre d'états possibles du cube (43 trillions) — ce qui semble effectivement nécessaire — mais pas davantage car on ne passe jamais deux fois par le même état.
Il existe de nombreuses solutions, et on peut poser des restrictions pour améliorer l'ergonomie de l'algorithme en maximisant le nombre de rotations de certaines faces par rapport à d'autres. Ainsi on peut avoir des solutions qui ne tournent que 5 faces sur les 6 et utilisent pour moitié des rotations des faces droite et haute.
Euh... J’aime pas les chefs-d’œuvres. Souvent, on s’emmerde.
Re: Greg Egan super-permutant
Ce que ne dit pas l'auteure de l'article - peut-être ne s'en est-elle pas rendue compte - c'est que, tant pour 3 que pour 4 épisodes, la surpermutation est palindromique (123121321 et 123412314231243121342132413214321). C'est vrai pour 3 et 4, est-ce vrai pour les chiffres d'ordre supérieur ? Vous avez 5 minutes.
Retourner vers « Toute l'actu »